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Abstract--The discrete symmetric heterostructure -
barrier varactor (HBV) was previously developed as
an unbiased frequency-tripling device that needed no
second-harmonic idler circuit. Other work investi-
gated nonlinear transmission lines (NLTLs) using dis-
crete varactors attached to linear guiding structures.
Fully-distributed Schottky-varactor NLTLs were exces-
sively lossy. This paper explores NLTLs based on fully-
distributed HBV structures. Using both a modified
FDTD method and numerical integration, it is shown
that such NLTLs can provide efficient tripling over a
wider range of input bandwidth than is possible with
fixed-tuned triplers.

L INTRODUCTION

Heterostructure-barrier varactors(HBV) with symmetri-
cal C(v) and antisymmetrical i(v) characteristics[1]-[7]
have thin large-bandgap barriers sandwiched between thick
smaller-bandgap layers. The even C(v) symmetry yields
high-power frequency multipliers [4], [8] whose output
spectra contain only odd-order harmonics. Maximum
nonlinearity occurs at v = 0V, obviating bias circuits.

Efficient multipliers need HBVs with large C,,,,/Cpin
ratios and small leakage currents. Due to excessive leak-
age, earlier HBVs fabricated on GaAs [1][2] and InP [3]
had low Q. The resulting triplers had efficiencies < 5% and
low outputs P, ~2 mW. P, ~saturation occurred at low
P;, levels. These shortcomings can be avoided by using the

stacked HBV structure of [4]. The InGaAs /InAlAs sys-
tem provides both effective current blocking and low-
resistance contacts [5].

With n stacked varactors, P,,~capability increases as n?,

while the capacitance decreases as n [5]{6]. A tuned (non-
distributed) 3-stack HBV tripler had a measured 20% effi-
ciency for P,,,= 100 mW at 39 GHz [4].

Other work [7] investigated NLTLs made by periodically
loading conventional lines with discrete varactors. NLTLs
using distributed Schottky varactor structures were too
lossy [7].

Here we investigate fully-distributed NLTLs using the

improved HBV structure. From an incremental NLTL
equivalent circuit we derive a nonlinear wave equation.
This is solved numerically by the FDTD method, using
appropriate initial and boundary conditions. As a check,
the NLTL is also modeled directly using Libra [13]; time
domain integration yields the transient solution. The wave-
form and spectra obtained by the two methods agree excel-
lently. Simulations show these NLTLs can provide efficient
tripling over a wider frequency range than provided by
fixed-tuned triplers.

II. DEVICE MODEL AND WAVE EQUATION

The structure of the fully-distributed NLTL is shown in
Fig. 1.
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Fig. 1 Cross-section of stacked HBV structure. The MBE
layers are similar to those in [5].

The idea is to extend the HBV device in a “horizontal”
direction to form an NLTL. At the high frequencies for
which it is well suited, such a NLTL would be of the order
of ~100 um long and 10 um wide. Fig. 2 shows the equiv-
alent circuit of an infinitesimal section of the NLTL. Here
i(z,t) is the current entering a section of length dz at loca-
tion z and instant ¢, while v(z,¢) is the corresponding volt-
age between the top and bottom metal contacts. L, is the
inductance/length, and g,(v) is the charge/ length.
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Fig. 2 Equivalent circuit of length dz of distributed NLTL.

Following [9], we assume the empirical v(g,) relation

(zt)  (q,(z1))3
S st ﬁ[ £ j 1
920 720

where 0, B and g, characterize HBV. From (1) and Fig. 2
we obtain the nonlinear wave equation
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where x(z, t)=q,(z, t)/q,p is the normalized charge/length,

u=1/( /CZO . LZ) is a velocity, and C,y= Ol g, is the

capacitance/length at zero bias.

II1I. THE NLTL SIMULATION

We simulate the NLTL (a) using a modified FDTD
method and (b) by numerical integration.

(a) The FDTD method was previously combined with
TLM for time-domain simulations of nonlinear devices
[10] or transmission lines [11]; the advantages being that
the TLM models physical wave propagation, while
FDTD offers computational efficiency. Our algorithm
resembles [10], except that instead of Maxwell’s curl equa-
tions, we use the nonlinear wave equation (2) to describe
wave propagation. Whereas general FDTD or TLM meth-
ods require 6 (field) variables, our algorithm needs only
one: the normalized charge x, and is consequently much
less computer-intensive. Furthermore, by using an empiri-
cal g-v relationship such as (1), it is easy to augment the
equivalent circuit for improved accuracy.

Applying FDTD [12] to the wave equation (2), we obtain
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In (3), the normalized charge x(z¢) is discretized in

space and time as

Xp = x(ih, nk)

where i = Az and k = At are space and time increments ,
and i and n are integers.
Fig. 3 shows a complete equivalent circuit of the NLTL.
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Fig. 3 A complete equivalent circuit of the NLTL.

The boundary conditions are

Vv;,(0,n) =V (n)—zo 4

VourMsn) = iy Ry %)
where Rg and R; are generator and load resistances, and
the equivalent circuit consists of M subsections. The phsi-
cal length of the NLTL is [ = Mh.
Application of Kirchhoff’s current law and FDTD [12]
to Fig. 3 results in
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Combining (4) and (5) with (1), the boundary and initial
conditions can be satisfied.
(b)The numerical integration approach involves simu-
lating the NLTL in Libra 6.0 [13]. The procedure is:
(i) Use curve fitting to represent the C(v) relation of (1)
by the polynomial

2 m
C(v)=c0+c1-v+c2~v +o.+Cp, VY 6)

Here C(v) = d q,/d v and the coefficients, cy, ¢}, ¢y,
.Cpy » depend on the constants, o, B and ¢,p. The
number of the coefficients used here was m~20,

(i1) Use (6) as the nonlinear capacitor model in Libra, and
build the equivalent circuit of the NLTL.

(iii)) Do time-domain simulations using the “Transient
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Bench” numerical integration procedure of Libra.

Fig. 4 compares the NLTL output voltage waveforms as
predicted by the two methods when the input is a 30-GHz
1.0-V sinewave. For the FDTD simulation, the equivalent
circuit of Fig. 3 used M = 25 subsections. Each subsection

corresponds to a discrete HBV of area 7% 27(Mm)2 ,

for an NLTL of width 27 um, and total length of
25x27um = 0.67mm. The parameters of each section
are 0=1.0, B=3.0, L,h=0.05 nH, C,oh=0.1 pF, Rh=1.0
Q  (shunt resistance). Fig. 4 shows good agreement
between the FDTD and numerical-integration methods.
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Fig. 4 NLTL time-domain simulation.

IV. RESULTS AND DISCUSSION
Modes of Operation: To investigate the NLTL behavior as

a distributed frequency multiplier for different input fre-
quencies f;, , we assumed an NLTL of length = 1.35 mm (M

= 50 subsections), with the parameters per-subsection of
a=1.0, B=3.0, L;h=0.05 nH, Cyh=0.1 pE Rh=0.5 Q.
Fig. 5 shows the simulated output waveform when f,= 29
GHz.
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Fig. 5(a) NLTL time-domain response for I=1.35 mm
fin=29 GHz, dnd P;= 4 dBm.
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Fig. 5(b) NLTL spectrum for [=1.35mm (M=50),

fin=29 GHz , and P;,= 4 dBm.

Fig. 5(b) is the corresponding spectrum, showing good
tripler operation with f,,,~= 87 GHz, a 3"- harmonic / fun-
damental power ratio of -0.28 dB, and conversion loss of
5.1 dB. All even harmonics are suppressed by the C(v)
symmetry, enhancing the conversion efficiency.

Fig. 6(a) depicts the waveform when f;,, is reduced to 20

GHz : higher-harmonic content is now evident.
[°X:] T

1 16
frequency (Hz)

fin = 20 GHz
M =50

output voitage (V)

: 2
4 1.66 1.68 17
time {nsec)

Fig. 6(a) NLTL output waveform for I=1.35mm,
fin=20 GHz, and P;= 4 dBm.
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Fig. 6(b) NLTL spectrum for I=1.35mm. f,,=20 GHz ,
and P;,=4 dBm.
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As seen in Fig. 6(b), the 5™ harmonic is now larger than

the 3%, and the NLTL is operating as a quintupler.
Optimization: To optimize as a tripler, we:
(i) Set f;,, = 30 GHz and varied the NLTL length over the
range 0.54mm <1< 1.89mm (20EM <70 )
(i1) Set / = 1.35 mm ( M =50) and varied the input fre-
quency over the range 20 < f; <30 GHz.

Fig. 7 shows that for experiment (i) the optimum length
is 1.35 mm, yielding a power ratio of -1.69 dB. (compared
with the -0.28 dB for f;,,=29 GHz). The power ratio remains
better than -3.0 dB over the range 1.08 mm </ < 1.62 mm
(40<M<60).
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Fig. 7 3" 4_harmonic to fundamental power ratio versus
NLTL length I (M), when f,,=30GHz.
For experiment (ii) Fig. 8 shows an effective input 3-dB
bandwidth of 25 to 31.5 GHz, the corresponding output
range being 75 to 94.5 GHz._
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Fig. 8 3" 4_harmonic to fundamental power ratio versus
input frequency f;,, , when 1=1.35mm (M=50)

V. CONCLUSION

A fully-distributed NLTL incorporating an extended
HBYV structure is reported. Nonlinear transient analysis is

carried out using both FDTD and numerical-integration
methods. The results indicate that this new device is
promising as an untuned wideband frequency multiplier,
with potential in millimeter-wave communications. Fur-
ther work will be directed to optimizing the parameters of
the NLTL and its embedding for efficient harmonic gener-
ation for specified output powers levels and bandwidths.
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