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discrete symmetric heterostructure -

(HBV) was previously developed as

an unbiased frequency-tripling device that needed no

second-harmonic idler circuit. Other work investi-

gated nonlinear transmission lines (NLTLs) using dis-

crete varactors attached to linear guiding structures.

Fully-distributed Schottky-varactor NLTLs were exces-

sively lossy. Thk paper explores NLTLs based on fully-

distributed HBV structures. Using both a modified

FDTD method and numerical integration, it is shown

that such NLTLs can provide efficient tripling over a

wider range of input baudwidth thau is possible with

fixed-tuned triplers.

I. INTRODUCTION

Heterostructure-bamier varactors(HBV) with symmetri-

cal C(v) and antisymmetrical i(v) characteristics[ l]-[7]

have thin large-bandgap barriers sandwiched between thick

smaller-bandgap layers. The even C(v) symmetry yields

high-power frequency multipliers [4], [8] whose output

spectra contain only odd-order harmonics. Maximum

nonlinearity occurs at v = OV, obviating bias circuits.

Efficient multipliers need HBVS with large CmJCmin

ratios and small leakage currents. Due to excessive leak-

age, earlier HBVS fabricated on GaAs [1] [2] and InP [3]

had low Q. The resulting triplers had efficiencies< 5% and

low outputs Pout -2 mW. Pout- saturation occurred at low

Pin levels. These shortcomings can be avoided by using the

stacked HBV structure of [4]. The InGaAs /InAIAs sys-

tem provides both effective current blocking and low-

resistance contacts [5].

With n stacked varactors, POUt-capability increases as n2,

while the capacitance decreases as n [5] [6]. A tuned (non-

distributed) 3-stack HBV tripler had a measured 20% effi-

ciency for Pout = 100 mW at 39 GHz [4].

Other work [7] investigated NLTLs made by periodically

loading conventional lines with discrete varactors. NETLs
using distributed Schottky varactor structures were too

lossy [7].

Here we investigate fully-distributed NLTLs using the
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improved HBV structure. From an incremental NEIL

equivalent circuit we derive a nonlinear wave equation.

This is solved numerically by the FDTD method, using

appropriate initial and boundary conditions. As a check,

the NLTL is also modeled directly using Libra [13]; time

domain integration yields the transient solution. The wave-

form and spectra obtained by the two methods agree excel-

lently. Simulations show these NLTLs can provide efficient

tripling over a wider frequency range than provided by

fixed-tuned triplers.

II. DEVICE MODEL AND WAVE EQUATION

The structure of the fully-distributed NLTL is shown in

Fig. 1.
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Fig. 1 Cross-section of stacked HBV structure. The MBE
layers are similar to those in [5].

The idea is to extend the HBV device in a “horizontal”

direction to form an NLTL. At the high frequencies for

which it is well suited, such a NLTL would be of the order

of -100 pm long and 10 pm wide. Fig. 2 shows the equiv-

alent circuit of an infinitesimal section of the NLTL. Here

i(z, t) is the current entering a section of length dz at loca-

tion z and instant t,while V(Z,t) is the corresponding volt-
age between the top and bottom metal contacts. Lz is the

inductancellength, and qz(v) is the chargel length.
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space and time as

i(z, t) Lz i(z,t)-1- di(z,t) x.
q n = X(U’Z,rut)

Fig. 2 Equivalent circuit of length dz of distributed NLTL.

Following [9], we assume the empirical V(qz) relation

qz(z, t)

[)

92(Z>~) 3
av(z, t)= — +p— (1)

920 920

where a, ~ and qzo characterize HBV. From (1) and Fig. 2

we obtain the nonlinear wave equation

(2)

where X(Z, t)=qz(z, t)/qZo is the normalized chargeflength,

u = 1/( ~~z) is a velocity, and CZO= cx qzo is the

capacitanceflength at zero bias.__________

III. THE NLTL SIMULATION

We simulate the NLTL (a) using a modified FDTD

method and (b) by numerical integration.

(a) The FDTD method was previously combined with

TLM for time-domain simulations of nonlinear devices

[10] or transmission lines [1 1]; the advantages being that

the TLM models physical wave propagation, while

FDTD offers computational efficiency. Our algorithm

resembles [10], except that instead of Maxwell’s curl equa-

tions, we use the nonlinear wave equation (2) to describe

wave propagation. Whereas general FDTD or TLM meth-

ods require 6 (field) variables, our algorithm needs only

one: the normalized charge x, and is consequently much

less computer-intensive. Furthermore, by using an empiri-

cal q-v relationship such as (l), it is easy to augment the

equivalent circuit for improved accuracy.

Applying FDTD [12] to the wave equation (2), we obtain

=2xin-xin_l
‘i, n+l >,

[

x

-!-k2. W2
i-l, n-2’xi, n+xi+l, n, ~+3, P,x2

h2 ( i, n)]

3.k2. p2. ~xin
+

2
‘ ‘Xi+l,~-Xi–l,~) -

2h2
(3)

In (3), the normalized charge x(z)t) is discretized in

where h = Az and k = At are space and time increments ,

and i and n are integers.

Fig. 3 shows a complete equivalent circuit of the NE’.

~n(o,n) Uol,t (A4,n)

Fig. 3 A complete equivalent circuit of the NLTL.

The boundary conditions are

Vin(o) FZ)= Vg(n) – i. . Rg (4)

vout(~, n) = iM ~RL (5)

where Rg and RL are generator and load resistances, and

the equivalent circuit consists of M subsections. The phsi-

cal length of the NLTL is 1 = Mh.

Application of Kirchhoff’s current law and FDTD [12]

to Fig. 3 results in

‘l, n–xl, n–2
io=il+qzo. h

2k

‘2, n–l ‘x2, n-3
il =i2+qzo, h

2.k

iM=iM_l-qzoh
‘M–l, n ‘xM–l, n–2

2k

‘M-2, n-l-xM–2,
iM_1=iM_2-qzoh

2k

n-3

Combining (4) and (5) with (l), the boundary and initial

conditions can be satisfied.

(b)The numerical integration approach involves simu-

lating the NLTL in Libra 6.0 [13]. The procedure is:

(i) Use curve fitting to represent the C(v) relation of (1)

by the polynomial

2 m
C(V) =CO+C1” V+ C2” V +... +cm”v (6)

Here C(v) = d qdd v and the coefficients, co cl, C2,

....cn , depend on the constants, et, ~ and qzo The

number of the coefficients used here was m-20.

(ii) Use (6) as the nonlinear capacitor model in Libra, and

build the equivalent circuit of the NLTL.

(iii) Do time-domain simulations using the “Transient
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Bench” numerical integration procedure of Libra.

Fig. 4 compares the NEIL output voltage waveforms as

predicted by the two methods when the input is a 30-GHz

1.O-V sinewave. For the FDTD simulation, the equivalent

circuit of Fig. 3 used M = 25 subsections. Each subsection

corresponds to a discrete HBV of area 27x 27(pm)2 ,

for an NLTL of width 27 pm, and total length of

25x 27pm = 0.67mm. The parameters of each section

are a=l.0, ~=3.0, LZh=0.05 nH, CZoh=O.1 pfi R~h=l.O

Q (shunt resistance). Fig. 4 shows good agreement

between the FDTD and numerical-integration methods.
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Fig. 4 NLTL time-domain simulation.

IV. RESULTS AND DISCUSSION

Modes of Operation: To investigate the NLTL behavior as

a distributed frequency multiplier for different input fre-

quenciesjn, we assumed an NLTL of length = 1.35 mm (M

= 50 subsections), with the parameters per-subsection of

ct=l.0, fi=3.0, LZh=0.05 nH, CZoh=O.l pfi R~h=O.5 Q.

Fig. 5

GHz .

shows the simulated output waveform when An= 29
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Fig. 5(a) NLTL time-domain response for 1=1.35 mm

jn=29 GHz, dnd Pin= 4 dBm.
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Fig. 5(b) NLTL spectrum for 1=1.35mm (M=50),

jn=29 GHz, and Pin= 4 dBm.

Fig. 5(b) is the corresponding spectrum, showing good

tripler operation with fout= 87 GHz, a 3rd- harmonic I fun-

damental power ratio of -0.28 dB, and conversion loss of

5.1 dB. All even harmonics are suppressed by the C(v)

symmetry, enhancing the conversion efficiency.

Fig. 6(a) depicts the waveform whenjn is reduced to 20

GHz : higher-harmonic content is now evident.
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Fig. 6(a) NLTL output waveform for 1=1.35mm,

&=20 GHz, and Pin= 4 dBm.
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Fig. 6(b) NLTL spectrum for 1=1.35mm. &=20 GHz,

and Pin= 4 dBm.
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As seen in Fig. 6(b), the 5th harmonic is now larger than

the 3rd, and the NLTL is operating as a quintuple.

Optimization: To optimize as a tripler, we:

(i) Setfin = 30 GHz and varied the NLTL length over the

range 0.54mm <1 S 1.89mm ( 20< M <70 )

(ii) Set 1 = 1.35 mm ( M =50) and varied the input fre-

quency over the range 205 jin S 30 GHz.

Fig. 7 shows that for experiment (i) the optimum length

is 1.35 mm, yielding a power ratio of-1.69 dB. (compared

with the -0.28 dB forjn=29 GHz). The power ratio remains

better than -3.0 dB over the range 1.08 mms 1s 1.62 mm

(40< MS60).

Fig. 7 3rd-harmonic to fundamental power ratio versus

NLTL length 1(M), when~n=30GHz.

For experiment (ii) Fig. 8 shows an effective input 3-dB

bandwidth of 25 to 31.5 GHz, the corresponding output

range being 75 to 94&5_GHz.
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20 22 24 m 30 32 ,4 ,.

I“w fr&’ncy (GHz)

Fig. 8 3rd-harmonic to fundamental power ratio versus

input fiequencyfi,l, when 1=1.35mm (M=50).

V. CONCLUSION

A fully-distributed NEIL incorporating an extended

HBV structure is reported. Nonlinear transient analysis is

carried out using both FDTD and numerical-integration

methods. The results indicate that this new device is

promising as an untuned wideband frequency multiplier,

with potential in millimeter-wave communications. Fur-

ther work will be directed to optimizing the parameters of

the NL~ and its embedding for efficient harmonic gener-

ation for specified output powers levels and bandwidths.
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